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Finding new applications for ceramic materials requires a better knowledge of thermal fatigue 
behaviour. However, result-scattering inherent to thermal fatigue and duration of a thermal 
fatigue cycle lead to a lack of experimental results. For these reasons, we have developed a 
new approach that permits the determination of a relevant stress intensity factor exponent n 
with a minimum testing sample number. From knowledge of the distribution function of 
artificial cracks, the analytical formula of the failure probability F(N) can be completely 
determined. Thus, it is possible to calculate n from a correlation of F(N) with experimental 
results obtained for only one temperature difference. Correlations between theoretical curves 
F(N) and experimental results, conducted for two temperature differences, lead to the same 
value of n. This and the good agreement between the experimental points and the theoretical 
curves validate this new approach. 

1. I n t r o d u c t i o n  
Severe thermal shocks on components exhibiting low 
thermal conductivity and high thermal expansion may 
induce large thermal stresses. If the stress intensity 
factor at the most critical flaw reaches its critical value, 
catastrophic fracture arises causing specimen ruin. 

Moreover, even lower thermal shocks may lead to 
material damage, this phenomenon being defined as 
thermal fatigue. It is now well recognized that fatigue 
is the resultant of two specific factors: slow crack 
growth (static fatigue) and cyclic fatigue. 

Slow crack growth, which appears for stress intens- 
ity factors lower than material toughness and above a 
threshold value K~ .... results from stress corrosion and 
is therefore strongly environment and temperature 
dependent. 

Cyclic fatigue has been reported in ceramics even 
for stress intensity factors lower than K~scc. Although 
the mechanisms are not fully understood, some pos- 
sible processes such as debris entrapped within the 
crack surfaces, which induce indentation-like cracks, 
or stress intensity increasing during unloading, have 
been proposed [1, 2]. 

Under a corrosive environment or at high temper- 
ature, the slow crack growth term is often considered 
as the major fatigue source and has therefore been 
solely regarded in the case of thermal fatigue. 

Thermal fatigue experiments are generally carried 
out by heating up a specimen which is subsequently 
quenched. The damage is recorded as a function of the 
cycle number. The lifetime is defined as the cycle 
number that makes the most critical crack grow from 
its initial size up to its critical size that induces a stress 
intensity factor matching the material toughness. 
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Clearly, thermal fatigue represents an ultimate ma- 
terial property that limits component applications. 
However, only a few works have previously been 
performed because of practical difficulties arising from 
such studies. Hasselman et al. [3, 4] have studied the 
thermal fatigue behaviour of glass quenched in water. 
Although their results showed a significant trend be- 
tween quenching temperature difference and critical 
cycle number that led to fracture, a tremendous dis- 
persion of the data was noted. A specific testing meth- 
odology was set up to overcome this dispersion. While 
nine starting specimens were concomitantly tested, 
only five of them were driven to fracture, the cumulat- 
ive fracture probability of the fifth specimen being 
considered equal to 0.5. Such a method is time efficient 
but does not allow the statistical distribution of results 
to be known. 

Glandus and Simonneau [5] investigated the ther- 
mal fatigue behaviour of alumina. Their results'were 
analysed with the use of relations, originally estab- 
lished by Singh et al. [6], which take into account the 
temperature dependence of stress corrosion velocity. 
They pointed out the great dispersion of the results, 
which has driven them to ignore large critical cycle 
numbers, since no statistical approach was used. 

Kamiya and Kamigaito [7, 8] applied Weibull stat- 
istics to their experimental results obtained on glass, 
Mullite and yttria. The Weibull statistics parameters 
could not all be determined for the stress state arising 
from quenching. Moreover, the extrapolation of those 
parameters from mechanical tests would be erroneous. 
A specific approach had therefore to be carried out for 
thermal fatigue results interpretation. This analysis 
needs the representation of the logarithm of the log- 
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arithm of the fracture probability versus the logarithm 
of the critical cycle number, from which straight lines 
of slopes defined as the Weibull modulus to the stress 
intensity factor exponent ratio may be plotted, for 
several temperature differences. The critical cycle 
numbers, taken for a given probability, may sub- 
sequently be represented as a function of temperature 
difference, which permits the calculation of n. Al- 
though interesting because of the statistical approach, 
this methodology has several drawbacks. Owing to 
the choice of the scale (lnln-ln), the precision is rela- 
tively poor. Furthermore, two steps are required to 
obtain the stress intensity factor exponent value, 
which can be known with sufficient precision only 
under the condition of testing a significant number of 
temperature differences. 

This brief survey describing the main approaches 
presented in the literature emphasizes the experi- 
mental difficulties arising during thermal fatigue ex- 
periments: 

(i) Thermal fatigue cycles are generally long, espe- 
cially compared with mechanical cycling that can 
easily be achieved at frequencies equal to 10 Hz. Ther- 
mal fatigue characterization is therefore very time 
consuming. 
(ii) The intrinsic flaw size distribution is enhanced by 
the slow crack growth propagation laws (power-like 
laws) leading to extremely dispersed results. 

Moreover, the two above, apparently separate, 
problems s.ynergetically lead to a further obstacle such 
that problem (ii) would require large numbers of 
experiments that are difficult to achieve owing to 
problem (i). 

Therefore, a precise statistical methodology with 
fully defined expressions has to be applied to improve 
thermal fatigue characterization. To achieve this tar- 
get, the present work proposes a new approach, i.e. 
creating artificial flaws in the samples, which brings 
several advantages: 

(i) The initial flaw size distribution may be nar- 
rowed. 
(ii) The initial flaw size distribution function may be 

precisely known. 
(iii) The critical defects being at the centre of the 
specimens, any edge effects may be avoided, leading to 
better known stress fields. 

The measured initial crack size distribution (ex- 
plicitly known) is subsequently combined with the 
slow crack growth law in order to define the cumulat- 
ive fracture probability as a function of thermal cycle 
number. 

2. Theory 
The objective of this part is to determine the analytical 
expression, for a given temperature difference, of the 
cumulative probability of fracture as a function of 
critical cycle number. First, the probability density of 
initial crack size is evaluated and related to the prob- 
ability density of critical cycle number. 
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2.1. Artificial flaws 
The starting cracks were made by Vickers indentation 
under the condition of having half penny shape cracks. 

The prerequisite of the present analysis being that 
the flaw distribution is definitely known, a Gaussian 
distribution law has been chosen as the starting hypo- 
thesis. This hypothesis will need experimental con- 
firmation (see below). The probability density as a 
function of flaw size is therefore given by: 

1 [ ~ ( a ~ - - ( a ) ] 2 ~  (1, 
fa(ai) -- Sd(2g)a/2 exp - So / A 

where a i is the initial flaw size, s d the standard devi- 
ation and ( a )  the average flaw size for given indenta- 
tion load and material. 

The probability densities of critical cycle number 
and crack size are defined as 

P(N < N o < N + dN) 
f (N )  = (2) 

dN 

and 

P(ai < aio < al + dai) 
fa(ai) = (2') 

dai 

where P(N < No < N + dN) and P(ai < aio < al 
+ dai) represent the probabilities that the critical 

thermal cycle number and the initial crack size are in 
the range N tO N + d N  and al to a~ + da i, respectively. 

The probability densities of initial crack size and 
critical cycle number are therefore related as 

da~ 
f (U )  = - f,(ai) dN (3) 

Note that the negative sign is due to the fact that the 
probability for a critical cycle number to be lower than 
a given value is equal to the probability for an initial 
crack size to be higher than a related given value. 

Equation 3 can be explicitly given as a function of 
the critical cycle number using Equation 1 after 
having determined the function ai(N): 

2.2. Thermal fatigue 
The slow crack growth velocity is assumed to be equal 
to that conventionally reported under isothermal 
conditions 1-6] 

da _ d t  A K ~ ' e x p ( - R ~ f )  (4) 

where a is the crack size, KI the mode I stress intensity 
factor, A a material constant, n the stress intensity 
factor exponent, Q the thermal activation energy, T 
the temperature and R the gas constant. 

The stress intensity factor is related to the crack size 
and to the applied stress according to 

KI = Y~T at~2 (5) 

where Y is a geometrical factor and o- x is the thermal 
stress induced by quenching. Analysis of quenching 
stresses shows that the sample surface is submitted to 
a biaxial tensile stress. Moreover, the tensile stress 
rapidly decreases along the sample depth and the core 



is under compression. Precise calculations as well as 
experiments have shown that for water quenching 
(high surface exchange coefficient) the tensile stress 
zone depth is very small, leading to nearly surface 
crack propagation. Therefore, only the maximum ten- 
sile stress (i.e., the surface stress), which is an explicit 
function of the time, has been considered for the 
calculation. 

Badaliance et al. [9] have shown that the surface 
stress calculated from heat transfer equations could be 
expressed as 

aT(t) = ATfB(t) (6) 

where AT is the temperature difference between hot 
temperature and quenching medium temperature and 
fB(t) is a function of the time given for a material, a 
sample shape and a quenching medium. Substituting 
Equations 5 and 6 into Equation 4 and integrating 
over the quenching time IX, the following relation is 
obtained [7] 

a~ = N2/(2-'~ 2)2/(2-" ' (AY"exp(-QT) 

f ~  'X 2/(2 -n) 
x f~( t )d t )  AT 2"/(2-") (7) 

where N is the critical cycle number. It is to be noted 
that Equation 7 has been obtained under the following 
assumption on the critical crack size af (i.e. the crack 
size after N thermal cycles) 

a{ 2-')/2 <~ al 2-")/2 (8) 

which implies that the temperature difference AT is 
much smaller than the critical temperature difference 
leading to thermal shock (fracture during the first 
cycle) or that n ,> 1. While the former assumption is 
almost never verified in laboratory conditions, the 
latter is generally satisfied. This will be confirmed in a 
following part. If those hypotheses cannot be satisfied, 
the critical flaw size must be included in Equation 7. 

The probability density as a function of thermal 
cycle number is subsequently obtained by substituting 
the derivative of Equation 7 with respect to N as well 
as Equation 1 into Equation 3. 

The failure probability is therefore explicitly expressed 
as a function of the variable N, the parameters A T, So, 
( a )  and n, and the G(T, n) function that needs to be 
clearly expressed. 

2.3, Determination of G(T, n) 
Equation 9' can be written as 

ln(G(T,n)) = In(A) - ~ T  + nln(Y) + ln(l(n)) 

( l l )  
with 

r g n l(n) = lo fB(t )dt  (11') 

fB(t) has been expressed by Badaliance et al. [9] for a 
long cylindrical rod subjected to radial heat flow as 
the result of an instantaneous decrease in ambient 
temperature, with conductive heat transfer in the solid 
and convective heat transfer in the surrounding 
medium. It is to be noted that an analytical expression 
is found if the thermal conductivity and the Young's 
modulus are constant over the considered temper- 
ature range. Otherwise, finite elemental calculation 
must be performed. Assuming that the transient ther- 
mal stress (aT(t)) is similar for a rectangular section 
bar, fs(t) can be written as 

v i exp ~ 5 -  t (12) 
i=1 

[ 2 J l ( r h ) -  rhao(rh) ] 

(12') 

with 

J l ( q i )  
v, = (132 + rh2)j2(rl,) 

where E is the elastic modulus, ~z the linear thermal 
expansion coefficient, v the Poisson ratio, 13 the Blot 
modulus, e the half thickness of the bar, ~c the thermal 
diffusivity, Jo and J1 the Bessel functions of the zero 
and first order, and q, the root of [3Jo(rl, ) - tin J l (q .  ) 
- -0 .  

f (N) - [ Sd(2n)l/2 exp 

( ( N ( ~ 2 2 ) G ( T , n ) A T " )  2/(2-"'-  ( a ) )  2 

(( n -- 2"~" , n)ZATZn) 11(2-") - - f - )  N G(T, 

(9) 

with 

G(T,n) = AY"exp(--~T) f~f~(t)dt (9') 

Given that, the failure probability can be expressed as 

G(T, n) is so far fully defined as an analytical func- 
tion of n and T. The G(T, n) expression can be simpli- 
fied following approximations and calculations de- 
tailed in Appendix 1. Thus, G(T, n) can be expressed 

F(N~) sa(2r~) t/2 

--<a>) 
exp - 2~ N"/(2-nidN 

(10) 
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as: 

ln(G(T, n)) = In(A) -- Q/(RT) 

+ nln(2E~vl Y/(1 - v)) + D (13) 

where D is a constant. 
Finally, for a given artificial flaw size distribution, 

the fracture probability F(N) only depends on n, Tand  
AT. Therefore, the experimental value of n may be 
found from the best fitting of experimental points, 
obtained at a given AT, by the theoretical curve F(N). 

3. Experimental procedure 
The following experiments have been carried out to 
examine the validity of the above approach. 

3.1. Specimens 
The specimens were mullite bars of rectangular section 
with dimensions 40 x 4 x 2 mm 3. Their chemical com- 
position and physical properties are given in Table I. 
The edges of the bars had been polished with 1200 grit 
silicon carbide paper. A Vickers indentation was made 
on a face centre with an applied load of 20 N for 15 s. 
The specimens were further heated and held at 
1000~ for 1 h in order to release residual stresses 
induced by indentation. 

3.2. Determination of the crack size 
distribution function 

To find the crack size distribution function, 19 Vickers 
indentations were made on a Mullite bar. The crack 
lengths were measured on the specimen surface by 
optical microscopy. For  each length, the cumulative 
probability Fa(a~) was taken as the fraction given by 
dividing the number of lengths ~< a i by the total 
number of measured lengths, 19. 

Having calculated the experimental values Fa(al), 
the average ( a )  and the standard deviation s0 
allowing the best fitting between the experimental 

points and a normal law were determined. The best 
fitting was obtained taking ( a ) =  183gm and 
s0 = 14 gm (Fig. 1). It should be noted that a good 
agreement was achieved, which validates the assump- 
tion that the artificial crack size distribution function 
can be well described by a Gaussian law. 

3.3. Apparatus and experimental procedure 
The apparatus consists of a hot zone in an electric 
resistance furnace, a cold zone in a 20 ~ regulated 
water tank and a transfer system. The time for the 
transfer from the hot zone to the water was about 1 s 
and that from the water to the hot zone about 25 s. 
The sample was held in the hot zone for 10 min and in 
the cold zone for 40 s. 

The temperature difference AT in the formulae has 
been taken as the difference between the temperature 
of the hot zone, T, and that of the water. The failure of 
a specimen was determined by the occurrence of a 
visible crack on the sample surface. Detection of a 
visible crack on specimens was recorded, by use of dye 
penetrant, at a given thermal cycle number. The fail- 
ure probability F has been taken as the ratio of the 
number of fractured specimens after a given thermal 
cycle number to the total number of tested specimens. 

3.4. Numerical expression of G(T, n) 
Since the A and Y constants in Equation 9' cannot be 
known with high accuracy, the numerical function of 
G(T, n) has been experimentally determined. Seven 
samples were tested with a hot temperature equal to 
285~ i.e. A T =  265~ (see Table II). Knowing s 0 
and (a ) ,  the theoretical distribution function F(N) 
can be calculated for given n and G(285, n) values. 
Thus, the values of G(285, n) that give the best fitting 
between experimental points and the theoretical dis- 
tribution function have been calculated for ten values 
of n in the range 20-110. The accuracy of the fitting 
has been quantified by the value S (G), defined as the 
sum of the distances between the experimental points 

TABLE I Chemical composition and physical properties of the specimens of Mullite 

Characteristics Value 

Chemical" Chemical composition (wt %): 
A120 3 76.4 
SiO2 22.8 
Na20 + K20 < 0.5 
Other impurities < 0.3 

Open porosity (vol %) 0 
Apparent bulk density (kg m - 3 x  10 a) > 3.07 
Theoretical density (kg m -3 x 103) 3.15 

Coefficient of linear expansion (K-1 x 10 -6) (20/500 ~ 4.8 
Thermal conductivity (at 20 ~ (Wm-1 K-~) 4.4 
Specific heat (at 100 ~ (J kg- 1 K-  1 ) 900 

Mechanical strength, 4-point bending (at 20 ~ (MPa) b 234 
Young's modulus (at 20 ~ (GPa) b 190 
Poisson's modtdus (at 20 ~ 0.28 
Kic Toughness (at 20~ (MPa M1/2) b 2.6 

PhysicaP 

Thermal a 

Mechanical 

a Data given by the manufacturer (C6ramiques et Composites, Bazet, France). 
b Data measured by the authors. 

5542 



T A B L E  I I  Experimental critical thermal cycle numbers four dif- 

ferent values of AT 

Sample no. A T (~ 

270 265 260 255 

N 1 1 4 34 20 

N 2 I9 10 58 318 

N 3 32 10 102 546 a 

N 4 38 710 1564 a 

N 5 94 738 1776 ~ 

N6 290 

N 7 318 a 

a Samples with no visible crack after the reported thermal cycle 

number. 

and the theoretical curve. Plotting in(G(285, n)) versus 
n has allowed the calculation of the numerical function 
G(285, n) (Fig. 2) which was found to be: G(285, n) 
= e x p ( -  1.28 n -  15). 

4.  R e s u l t s  
Only four parameters are so far required to calculate 
the distribution function F(N). Three of those para- 
meters have been experimentally fixed, s o = 14 gm, 
( a )  = 183 gm and AT = 265 ~ Thus, n was the sole 
unknown parameter  in Equation 10. It has been ob- 
tained from the best fitting between the experimental 
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- 1 4 0  

v 
to 

--.. 
-170 . . . . .  

0 2 0  4 0  6 0  8 0  1 0 0  1 2 0  
n 

Figure2 G(T,n) functions experimentally determined at O, 
T = 285 ~ and I I ,  T = 280 ~ 

points and the theoretical distribution function curve, 
F(N). The sum S(n) taken as the sum of the distances 
between the experimental points and the theoretical 
distribution function curve has again been chosen as 
the fitting accuracy criterion. 

Fig. 3 represents S as a function of n and shows a 
minimum at n = 55. The stress intensity factor expo- 
nent of this Mullite, submitted to water quenching, is 
therefore equal to 55. Note  that this result is in the 
wide range reported in the literature for oxide mater- 
ials [5, 7]. Moreover, the assumption under which 
Equation 7 was obtained, i.e. n >> 1, was justified. 

Fig. 4 shows the distribution function versus the 
thermal cycle number. The good agreement between 
experiments and the theoretical curve F(N) validates 
Equation 10. 

To confirm the n value found for A T =  265~ 
other tests have been carried out for AT = 260 ~ (see 
Table II). Considering the small temperature range 
investigated, i.e. 275-290~ the term - Q / R T  of 
Equation 13 has been assumed to be constant. This 
assumption has been verified for T =  280~ (see 
Fig. 2). Thus, the same G(T, n) numerical function has 
been taken for the whole temperature range tested. 

The same analysis as that applied for AT = 265 ~ 
has led to n = 53 for AT = 260 ~ (Fig. 5). From this 
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C r a c k  length (gm) 

Figure 1 Measured indentation crack size and theoretical normal  

law ( ( a )  = 183 gm and s d = 14 pro). B, Experimental  points; , 

theoretical normal law. 

Figure 3 Sum of the distances between the experimental points and 

the theoretical curve F(N) as a function of the stress intensity factor 
exponent (AT = 265 ~ 
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.a 0.8 
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i i 
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Figure 4 Cumulative failure probabili ty as a function of thermal 
cycle number (AT = 265 ~ ( a )  = 183 #m and s d = 14 pm), B,  
Experimental points; - - ,  theoretical curve. 
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Figure 5 Sum of the distances between the experimental points and 
the theoretical curve F(N) as a function of the stress intensity factor 
exponent (AT = 260 ~ 
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Figure 6 Cumulat ive failure probability as a function of thermal 
cycle number  ( A T =  260~ ( a ) =  183 ~tm and Sd = 14 gm). II, 
Experimental points; - - ,  theoretical curve. 

value, the theoretical distribution function has been 
calculated (Fig. 6). 

Some tests have also been carried out with AT 
= 255 ~ and AT = 270 ~ Although it has not been 

possible to determine a relevant value of n with the few 
samples tested (see Table II), the theoretical distribu- 
tion functions calculated taking the previous value of 
n(n = 53) have been plotted for A T =  270~ and 
AT = 255 ~ in Fig. 7. 

5. Discussion 
In order to link this approach with those generally 
used, the authors have defined some representative 
values of critical cycle numbers which can be plotted 
as a function of A T. 

From Equation 7, one can write [7] for samples 
having the same initial crack size 

ln(N) = - nln(AT) + Z (14) 

where Z is a constant. Thus, plotting ln(N) versus 
ln(AT) allows the calculation of n. Although having a 
constant initial crack size is experimentally impos- 
sible, the knowledge of initial crack size distribution 
function and failure probability function allows values 
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Figure 7 Cumulat ive failure probability as a function of thermal 
cycle number  (CI, A T =  270~ and II, A T =  255~ 
( a )  = 183 gm and s d = 14 gm). 

of N which correspond to a given initial crack size to 
be calculated. For  instance, one can calculate the 
critical cycle numbers which agree with an initial 
crack size al, x. From this initial crack size, the cumula- 
ted probability F,(ai,x) = P(a~ <~ a~,x) = x and the cor- 
responding thermal cycle number N x defined by 
F(Nx) = P(N <~ Nx) = 1 - x could be calculated. In 
the present case, the critical cycle number representat- 
ive values which agree with an initial crack size ai, o.5 
= ( a )  = 183 gm, have been calculated. Those values 

of No. 5 defined by F(No.5)= 0.5 are reported in 
Table III. 

Another example of critical cycle number represent-, 
ative values is the group of critical cycle numbers 
defined by df(NM)/dN = 0: For  those cycle numbers, 
the failure probability density function is maximum 
and the corresponding initial crack size is: a~, M = ( ( a )  
+((a)2+2ns~) l /2 ) /2  (see Appendix 2). Experi- 

mental conditions described in this paper lead to 
a~,M = 208 lam and the calculated values of NM are 
reported in Table III. The N M values are much smaller 
than the critical cycle numbers found experimentally 
due to the fact that they agree with a large initial crack 
size (ai, M = ( a )  + 1.8 Sd)- 

Both examples of critical thermal cycle numbers are 
plotted as a function of temperature difference AT in 
Fig. 8. The two least square straight lines run parallel 
with a slope equal to - 54. Fig. 8 clearly shows that 
when the failure probability and the  crack size dis- 
tribution function are well defined, the thermal fatigue 
behaviour can be described by several kinds of ther- 
mal cycle number representative values calculated 
from a constant initial crack size. 

T A B L E I I I Representative values of thermal cycle numbers  

A T (~ C) n No, 5 NM 

270 _a 14 0.5 
265 55 36 1.1 
260 53 104 4 
255 -" 288 11 

a Value not known. 
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Figure 8 Representative values of thermal cycle numbers as a func- 
tion of AT. The slope of the straight lines is equal to - 54. D, N 
such as F(N) = 0.5; I ,  N such as df(N)/dN = O. 

It should also be noted that the thermal activation 
energy Q could be determined from the approach 
presented in this paper. Indeed, Equation 13 can be 
rewritten as: 

ln(G(T,n))  = cn + d(T)  (15) 

where c and d(T) are experimentally known values for 
a given temperature. Thus, determining the numerical 
expressions G(T, n) at two temperatures T~ and T2 
allows the calculation 

Q = ( R ( d ( T 1 )  - d ( T 2 ) ) )  Z l  (16)  

However, under usual laboratory conditions, T 1 and 
T 2 are too close for a relevant determination of the 
thermal activation energy. Thus, if this value has to be 
known with high accuracy, mechanical tests seem to 
be unavoidable. 

Finally, Fig. 9 shows theoretical failure probability 
curves as a function of thermal cycle number, for 
several values of AT. Those curves illustrate the rapid 
increase of the result scattering even for experiments 
carried out at AT close to the critical temperature 
difference with pre-indented specimens. This confirms 
the practical difficulties in obtaining the thermal 
fatigue parameters n and Q under industrial environ- 
ments (i.e. A T <  ATe). Finding relations between 
mechanical fatigue behaviour of ceramic materials 
could be a way to overcome those difficulties. 
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Figure 9 Theoretical cumulative failure probability curves as a 
function of thermal cycle number for four values of AT. 

This approach has been validated with experiments 
on Mullite with two temperature differences. Both n 
values found have been shown to be very close, and a 
good agreement between experimental points and the- 
oretical curves has been obtained. 

This new approach allows the study of the thermal 
fatigue behaviour of ceramic materials with a reason- 
able experimental t ime  and high accuracy. Under- 
standing of the material damage phenomena arising 
during thermal fatigue and in turn the life prediction 
of the ceramic components may therefore be im- 
proved. 

A p p e n d i x  1 
Substituting Equation 12 in Equation 11', I(n) can be 
written 

(All)  

Since the terms of the sum rapidly converge to zero, 
only the first five terms are needed to calculate values 
of the fB(t) function with high accuracy. Thus, using 
the general binomial formula 

(Xl + x2 + " ' "  +Xp)" = 

Xp p (A12) 
n! 

nl!n2! . . . . .  rip! X 1  X 2  . . . . .  

6.  C o n c l u s i o n  
A refined statistical approach has been developed to 
determine the stress intensity factor exponent n with a 
minimum testing sample number. This approach is 
based on the knowledge of the artificial crack size 
distribution function and allows the whole determina- 
tion of the failure probability analytical expression. 
From this expression the n value can be calculated 
with experiments carried out under only one temper- 
ature difference. 

/ E~ 
I(n) = { 

\ 

where the sum I2 is taken for all integers/'/1, n2 . . . .  , n p  

such that n ~ + n  2 + . . . + n p = n ,  I(n) can be re- 
written as 

I(n) 
1 - v )  nl!n2! . . .  n5[ 

x v~'-exp - e ~ t  dt 
i = 1  

(A13) 

This expression can be integrated, giving 

, , , ! , ,2 ' .  - . . .  ,5 ' .  , =1  - + n ,,2 + - + 

(A14) 
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therefore 

ln(I(n)) 
0 120  = n l n ( 2 E ~ V l )  

\ ~ - v /  

- l n ( n ) -  In ( ~  nzl) (A16) 

In order to verify both assumptions mentioned above, 
integral I(n) has been numerically calculated from 
Equation (A1 l) and from Equation A16. It can be seen 
in Fig. A1 that for n increasing from 20 to 110, the two 
equations lead to almost the same I(n) values. More- 
over, in Equation A16, for n values in the range 
20-110, ln(n) can be considered as constant compared 
with the increase of the nln(2E~v 1/(I -- v)) term. Thus, 
I(n) can be expressed as 

ln(I(n)) = nln(2Euvl/(1 - v)) + D (A17) 

with 

D = - In(n) - ln(Krl~/e 2) (A17') 

Substituting Equation A17 into Equation 11 gives 
Equation 13, namely 

ln(G(T, n)) = In(A) - Q/(RT)  

+ nln(2E~Vl I1/(1 - v)) + D 

A p p e n d i x  2 
The critical cycle number Nu is defined by 

df(Nu)  
- 0 (A21) 

dN 

where, from Equation 3 

d a  i 
f ( N )  = - fa(a,) dN 

One can therefore write 

df(N) 
dN 4a, \ dN / + f . (aO~ (A22) 

Moreover, with the definition of the normal law 
(Equa t ion  1) 

1 E t ( a '  ~ ( a ) )  2 ] 
f~(aj) - Sa(2~)l/2 exp -- 2 sa / d 
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If it is assumed that the term such as: nl = n and 
n E = n 3 = n 4 = n s = O  is much greater than the 
others, and that 

exp -)5(n~nl +r l~n2+'"+rl~ns) la  < 1 

I(n) can be simply expressed by 

( E~ ~"2, v] (A15) 
I(n) = 1 - v ] Ke-ZqZn 

Figure AI  Values of integral I as a function of the stress intensity 
factor exponent calculated from the original and simplified eqUa- 
tions ( E = 2 0 7 G P a ;  ~ = 4 . 8 •  - 6 K - 1 ;  v=0 .28 ;  v a=0.264;  
K = 1.3 x 10 -6 mZs; R = 10 -3 m; rl a = 1.99). z~, Calculated from 
Equation Al l ;  III, calculated from Equation A16. 

and the relation (Equation 7) 

x G(T, n) 2/(2 -") A T  (2")/(= -") 

d f (N) /dN can be written as 

df(N) _ 2al [2(ai - (a))ai  1 +  n 
dN f~(ai) N2(2 - n) 2 s~ 

(A23) 

Since a i and f a (a i )  do not equal zero, the condition 
df(NM)/dN = 0 agrees with: 

( a )  + ( ( a )  2 + 2ns2)  1/2 

ai'M = 2 (A24) 

which is the single positive solution. 
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